Home » An alien comet from another star is streaking through our solar system

An alien comet from another star is streaking through our solar system

by Alien UFO Sightings
0 comment

Something strange is sailing toward us. Something small and cold and extraordinarily fast. No one knows where it came from, or where it is going. But it’s not from around here.

This is an interstellar comet — an ancient ball of ice and gas and dust, formed on the frozen outskirts of a distant star, which some lucky quirk of gravity has tossed into our path.

To astronomers, the comet is a care package from the cosmos — a piece of a place they will never be able to visit, a key to all the worlds they cannot directly observe.

It is only the second interstellar interloper scientists have seen in our solar system. And it’s the first one they’ve been able to get a good look at. By tracking the comet’s movement, measuring its composition and monitoring its behavior, researchers are seeking clues about the place it came from and the space it crossed to get here. They have already found a carbon-based molecule and possibly water — two familiar chemicals in such an alien object.

Astronomer Doug Durig waits in darkness for images of the celestial object 2I/Borisov, a comet from another star, on Oct. 3, 2019, in Sewanee, Tenn.

As the sun sinks behind the Tennessee mountains, and stars wink into view, astronomer Doug Durig climbs onto the rooftop of his observatory, powers up his three telescopes and angles them skyward.

Every night, the comet grows bigger and brighter in the sky, expelling streams of gas and dust that may offer up clues to its history. On Dec. 8, it will make its nearest approach to Earth, offering researchers an up-close glimpse before it zooms back into the freezing, featureless void.

Far below in the darkness, Durig will be waiting.

Each star in the night sky represents a possible solar system. Every light in the universe is, more likely than not, some alien planet’s sun.

This is the chief lesson of two decades of studying exoplanets. Scientists have identified thousands of worlds beyond our solar system: gas giants and tiny rocky spheres, worlds lit by dim red suns and ones that orbit the spinning remains of collapsed stars. There are even planets circling medium-size yellow suns like ours — though nothing found so far can match the breathable atmosphere and deep, blue oceans of Earth.

Yet even when viewed through the most powerful telescopes, exoplanets are not discernible as anything more than specks of light. And no human alive has a hope of traveling to another star — merely approaching the nearest one would take 40,000 years.

The path of comet 21/Borisov through our solar system. The panel at left shows the comet’s straight path across interstellar space slightly deflected by the sun’s gravitational pull. The panel at right shows the comet’s position relative to Earth when the NASA/ESA Hubble Space Telescope observed it on Oct. 12, 2019, when it was almost 261 million miles from Earth.

Scientists’ best hope for closely examining another solar system was to wait for a piece of one to come to us.

It was Aug. 30, in the quiet moments before dawn, when a self-taught astronomer in a Crimean mountain village spotted a faint smudge low on the horizon, barely distinguishable against the glittering background of stars.

Gennady Borisov submitted his observations to the Minor Planet Center, the astronomers’ clearinghouse for information about small bodies in the solar system, so other scientists could take a look.

One night later, halfway across the planet, the strange report caught Durig’s eye.

“I was the second person to observe it,” Durig said. “That confirmed the comet was real.”

Within a couple of weeks, scientists had collected enough observations to calculate the comet’s orbit. But they did not find the oval path that comets typically make around the sun. Instead, the orbit was hyperbolic — it did not close in on itself. The object was also traveling at the blistering speed of 93,000 miles per hour, far faster than any comets, asteroids or planets orbiting our sun.

“Wow,” said Davide Farnocchia, a navigation engineer at NASA’s Jet Propulsion Laboratory, who was among the first people to determine that the comet came from another star. “I was not expecting to see anything like that.”

There has been only one other interstellar object spotted in our solar system: a cigar-shaped rock named ‘Oumuamua, a Hawaiian word that translates to “messenger from afar.”

But ‘Oumuamua was already on its way out of the system when it was discovered in October 2017, and it was so faint that scientists were never able to view it as more than a single pixel of light. They were not quite sure what they had seen — was it a metallic, rocky asteroid or an icy, dusty comet? And they were unsure whether the detection was just a lucky fluke, never to be repeated, or a harbinger of things to come.

So researchers were thrilled when, less than two years later, another interstellar traveler arrived.

The new comet, which has been named 2I/Borisov (indicating its discoverer and its status as the second known interstellar object), is expected to be within reach of telescopes until fall 2020. At its closest approach, next month, it will be twice as far from Earth as Earth is from the sun.

Though it entered the solar system from the direction of the constellation Cassiopeia, scientists do not know yet where 2I/Borisov came from, or how long it has drifted through the desolation of interstellar space. Given its current speed, it has certainly been traveling for millions, if not billions, of years.

As the object gets closer to the sun’s warmth, ices on its surface turn into gas. This creates the characteristic halo-like “coma,” which scientists can scrutinize to determine what the comet is made of. Already, 2I/Borisov has been observed more than 2,000 times.

“That’s going to be fun, in terms of looking at this object … as it comes in from the deep freeze for the very first time,” said Michele Bannister, an astronomer at Queen’s University Belfast. “Let’s open it up and see what we have with this particular present from another star.”

Exoplanet discoveries revealed we live in a crowded cosmos. But they also awakened Earthlings to how lonely we are. Mostplanetary systems discovered in recent decades are wildly unfamiliar, and the most common type of exoplanet – a body larger than Earth but smaller than Neptune — doesn’t exist near our home.

When astronomers had only our own solar system to go by, “it used to seem like planet formation was solved,”said Malena Rice, an astrophysicist at Yale University. “And then all of a sudden there are all these strange systems that don’t fit our picture.”

Interstellar comets are uniquely useful for confronting this conundrum. They are born of the same swirling disk of gas and dust that produces planets around an infant star. But then they get stranded at the icy edges of solar systems, where they can preserve the early ingredients of planet formation.

Comets in our own solar system have been found to contain some of the basic ingredients for life: water, carbon, even complex organic compounds. Now 2I/Borisov could tell us whether life’s essential molecules were among the building blocks of a world beyond our own.

This fall, Bannister’s colleague Alan Fitzsimmons produced the first-ever detection of a chemical compound emitted by an interstellar comet. Separating light from 2I/Borisov into its component parts, his team found a signature of cyanogen, a molecule made of a carbon atom and a nitrogen atom bonded together. The gas is common in comets around this sun.

“When I saw that, I shouted in my office … something not repeatable in a respectable newspaper,” Fitzsimmons recalled.

A few weeks later, astronomer Adam McKay detected oxygen streaming off the comet, an indicator that sunlight is striking water on the surface and breaking up the molecule. If confirmed, this would be the first-ever detection of alien water in our solar system. It is also another sign that 2I/Borisov is much like the comets we know.

“Even in these other systems where their architectures are very different, maybe the underlying physics and chemistry is still pretty similar,” said McKay, a research scientist at NASA’s Goddard Space Flight Center.

Models of our solar system suggest that about 90 percent of the leftover material from planet formation was ejected into interstellar space. The space beyond Neptune still harbors millions of icy bodies, which over millennia can be knocked out of orbit and slung away from the sun.

If any of these scattered fragments happen to be pulled into another system and start to glow in the heat of its star, they will appear as interstellar comets to whoever might be watching.

“There’s a universality to that, which is amazing,” Bannister said. “Our planetary system is woven together with another planetary system by these little wanderers roving across the galaxy.”

Source www.stripes.com

Join our list

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

Thank you for subscribing.

Something went wrong.

You may also like

Leave a Reply

Thank you for subscribing.

Something went wrong.

Join our list

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

Thank you for subscribing.

Something went wrong.

Join our list

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

%d bloggers like this:

Join our list

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

Thank you for subscribing.

Something went wrong.